博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
转:matlab+spider+weka
阅读量:7224 次
发布时间:2019-06-29

本文共 6107 字,大约阅读时间需要 20 分钟。

转自数据挖掘青年 

一 spider主页 (也可以在google上搜索spider matlab得到),关于它的介绍可以参考网址资料

二 使用时为matlab+spider+Weka;因为spider中的一些算法引用了Weka,比如j48

安装注意:

1 matlab7(R14)

  6.5版本对java的支持不够,还没有开发javaclasspath等函数

??? Undefined function or variable 'javaclasspath'.

??? Undefined function or variable 'javaaddclasspath'.

2 jre1.4.2

 matlab7自带的是1.4.2;matlab6自带的是1.3.可以在D:\MATLAB7\sys\java\jre\win32下看到。如果装了matlab7,使用它自带的1.4.2就可以了,尤其不要使用1.6,因为1.6太新了,matlab还不支持。可以在Matlab下使用 version -java查看JVM版本。

 如果你想使用1.5的话,C:\Program Files\Java\jre1.5.0_10;把jre1.5.0_10这个文件夹拷贝到D:\MATLAB7\sys\java\jre\win32下,然后增加环境变量MATLAB_JAVA:D:\MATLAB7\sys\java\jre\win32\jre1.5.0_10。这一步如果有问题的话,重启Matlab会给出错误提示。找不到什么什么文件...

3 Weka3.4.10

  使用weka版本低一些即可,高的不行,因为高版本的weka可能是用高版本的jvm支持的。

我使用的组合是 matlab7(R14)+jre1.4.2(matlab7自带的,不需要任何设置)+Weka3.4.10

weka 下载:

三 使用方法

1 下载spider,有core和extra两个压缩包,把他们解压到同一个文件夹spider下面,然后放到$matlabroot\toolbox下面

2下载weka3.4.10,找到weka.jar放到$matlabroot\java\jar下面

3 启动Matlab打开$matlabroot\toolbox\spider\use_spider.m运行

提示spider的一些信息和 WEKA support enabled!表示成功了。

然后可以使用 help spider命令查看信息,他的功能列出如附录,然后就可以训练了。

四 一个简单的例子

X=rand(50)-0.5; Y=sign(sum(X,2));

dtrain=data(X,Y);
%生成训练集,也可以使用load()从文件读取

model=train(svm,dtrain));

%使用函数train()训练模型

rtest=test(dtest,model);

%使用训练好的模型对验证集dtest测试,返回测试结果

五 附录spider信息

最新spider Version 1.71 (24/7/2006)

 Basic library objects. 

    data         - Storing input data and output results 
    data_global  - Implementation of data object that limits memory overhead
    algorithm    - Generic algorithm object
    group        - Groups sets of objects together (algorithms or data) 
    loss         - Evaluates loss functions
    get_mean     - Takes mean loss over groups of algs
    chain        - Builds chains of objects: output of one to input of another
    param        - To train and test different hyperparameters of an object
    cv           - Cross validation using objects given data
    kernel       - Evaluates and caches kernel functions
    distance     - Evaluates and caches distance functions
 
  Statistical Tests objects.
    wilcoxon     - Wilcoxon test of statistical significance of results
    corrt_test   - Corrected resampled t-test - for dependent trials
 
  Dataset objects.
    spiral       - Spiral dataset generator.
    toy          - Generator of dataset with only a few relevant features
    toy2d        - Simple 2d Gaussian problem generator
    toyreg       - Linear Regression with o outputs and n inputs 
 
  Pre-Processing objects
    normalize    - Simple normalization of data
    map          - General user specified mapping function of data
 
  Density Estimation objects.
    parzen       - Parzen's windows kernel density estimator
    indep        - Density estimator which assumes feature independence
    bayes        - Classifer based on density estimation for each class
    gauss        - Normal distribution density estimator
                     
  Pattern Recognition objects.
    svm          - Support Vector Machine (svm)
    c45          - C4.5 for binary or multi-class 
    knn          - k-nearest neighbours
    platt        - Conditional Probability estimation for margin classifiers
    mksvm        - Multi-Kernel LP-SVM
    anorm        - Minimize the a-norm in alpha space using kernels
    lgcz         - Local and Global Consistent Learner 
    bagging      - Bagging Classifier
    adaboost     - ADABoost method
    hmm          - Hidden Markov Model 
    loom         - Leave One Out Machine 
    l1           - Minimize l1 norm of w for a linear separator 
    kde          - Kernel Dependency Estimation: general input/output machine
    dualperceptron       - Kernel Perceptron
    ord_reg_perceptron   - Ordinal Regression Perceptron (Shen et al.)
    splitting_perceptron - Splitting Perceptron (Shen et al.)
    budget_perceptron    - Sparse, online Pereceptron (Crammer et al.)
    randomforest - Random Forest Decision Trees         WEKA-Required
    j48          - J48 Decision Trees for binary        WEKA-Required
 
  Multi-Class and Multi-label objects. 
    one_vs_rest  - Voting method of one against the rest (also for multi-label)
    one_vs_one   - Voting method of one against one
    mc_svm       - Multi-class Support Vector Machine by J.Weston
    c45          - C4.5 for binary or multi-class 
    knn          - k-nearest neighbours
                
  Feature Selection objects.
    feat_sel     - Generic object for feature selection + classifier
    r2w2_sel     - SVM Bound-based feature selection
    rfe          - Recursive Feature Elimination (also for the non-linear case)
    l0           - Dual zero-norm minimization (Weston, Elisseeff)
    fsv          - Primal zero-norm based feature selection (Mangasarian)
    fisher       - Fisher criterion feature selection
    mars         - selection algorithm of Friedman (greedy selection)
    clustub      - Multi-class feature selection using spectral clustering
    mutinf       - Mutual Information for feature selection.
       
  Regression objects.
    svr          - Support Vector Regression
    gproc        - Gaussian Process Regression 
    relvm_r      - Relevance vector machine 
    multi_rr     - (possibly multi-dimensional) ridge regression   
    mrs          - Multivariate Regression via Stiefel Constraints      
    knn          - k-nearest neighbours
    multi_reg    - meta method for independent multiple output regression
    kmp          - kernel matching pursuit
    kpls         - kernel partial least squares
    lms          - least mean squared regression [now obselete due to multi_rr]
    rbfnet       - Radial Basis Function Network (with moving centers)
    reptree      - Reduced Error Pruning Tree       WEKA-Required
 
  Model Selection objects.
    gridsel      - select parameters from a grid of values 
    r2w2_sel     - Selecting SVM parameters by generalization bound
    bayessel     - Bayessian parameter selection 
 
  Unsupervised objects.
    one_class_svm - One class SVM
    kmeans       - K means clustering
    kvq          - Kernel Vector Quantization
    kpca         - Kernel Principal Components Analysis
    ppca         - Probabilistic Principal Component Analysis
    nmf          - Non-negative Matrix factorization
    spectral     - Spectral clustering
    mrank        - Manifold ranking
    ppca         - Probabilistic PCA
 
  Reduced Set and Pre-Image objects.
    pmg_mds      - Calculate Pre-Images based on multi-dimensional scaling
    pmg_rr       - Calculate Pre-Images based on learning and ridge regression
    rsc_burges   - Bottom Up Reduced Set; calculates reduced set based on gradient descent
    rsc_fp       - Bottom Up Reduced Set; calculates reduced set for rbf with fixed-point iteration schemes
    rsc_mds      - Top Down Reduced Set; calculates reduced set with multi-dimensional scaling
    rsc_learn    - Top Down Reduced Set; calculates reduced set with ridge regression
    rss_l1       - Reduced Set Selection via L1 penalization
    rss_l0       - Reduced Set Selection via L0 penalization
    rss_mp       - Reduced Set Selection via matching pursuit

 

转载于:https://www.cnblogs.com/roseofprince/p/5052449.html

你可能感兴趣的文章
清理k8s集群小记(只针对自己的集群)
查看>>
印象笔记·剪藏
查看>>
一步一步在Windows下搭建React Native Android开发环境
查看>>
Gentoo:existing preserved libs问题
查看>>
Linux 常用操作
查看>>
HTTP Request header
查看>>
Android TextView支持的HTML标签
查看>>
tcp CLOSE Wait
查看>>
CentOS 7重置密码
查看>>
NBU对Oracle备份及恢复手册
查看>>
《威胁建模:设计和交付更安全的软件》
查看>>
PopupWindowFragment的使用及项目地址
查看>>
pecan入门
查看>>
数组指针和指针数组的区别
查看>>
[Git] Git整理(四) git rebase 的使用
查看>>
给div添加自定义的属性
查看>>
nGrinder 3.3 is released
查看>>
用于组织,测试和操作对象及类的工具和技术-6 方法调用
查看>>
android之wifi体系架构源码流程分析
查看>>
移动端下拉刷新、上拉加载更多 Jquery插件 dropload
查看>>